项目背景
`
更新时间:2024-07-08
开学时间9月
课程学制1年
学费37368.00/GBP
专业介绍
The Computational Finance MSc will introduce students to the computational methods that are widely used by practitioners and financial institutions in today’s markets. This course will provide students with a solid foundation not only in traditional quantitative methods and financial instruments, but also scientific computing, numerical methods, high-performance computing, distributed ledgers, big-data analytics and agent-based modelling. These techniques will be used to understand financial markets from a post-crisis perspective which incorporates findings from the study of financial markets at high-frequency time scales, modern approaches to understanding systematic risk and financial contagion, and disruptive technologies such as distributed-ledgers and crypto- currencies.
推荐顾问
世界排名
语言要求
Write
6.5
25
62
总分
7
100
69
学术要求
专业领域:
1 计算机科学
2 quantitative相关类专业如数学、统计学,物理、Natural Science,电子工程,General Engineering,运筹学。
先修科目:【basic mathematics知识特别是在微积分、三角学、线性代数、向量和矩阵数学方面】+【大一阶段的编程科目如Pascal, C, C++, Java】。
课程设置
Required modules:所需模块 Individual Project credits: 个人项目学分 Scientific Computing for Finance credits: 金融学分的科学计算 Quantitative Methods in Finance credits: 金融学分的定量方法 Case Studies in Finance credits: 金融学分的案例研究 Agent Based Modelling in Finance credits: 金融学分中的基于代理的建模 High Frequency Finance credits: 高频金融学分 Optional modules: 可选模块 Financial Markets credits: 金融市场学分 Fundamentals of Digital Signal Processing credits: 数字信号处理学分基础 Cryptography credits: 密码学学分 C for Financial Mathematics credits: C金融数学学分 Nature Inspired Learning Algorithms credits: 自然启发学习算法学分 Statistics in Finance credits: 金融学分统计 Software Engineering Underlying Technology for Financial Systems credits: 金融系统软件工程基础技术学分 Distributed Ledgers Crypto currencies credits: 分布式分类账加密货币学分 Security Management credits: 安全管理学分 Machine Learning credits: 机器学习学分